

PROPAGAÇÃO DE ESTACAS DE *MIKANIA* SPP. EM DIFERENTES SUBSTRATOS

<u>HENGEL, Andressa</u>¹; KOEFENDER, Jana²; MANFIO, Candida Elisa³; GOLLE, Diego Pascoal³; HORN, Roberta Cattaneo³; CAMERA, Juliane Nicolodi⁴; SCHÖFFEL, André⁵; KAIPER, Cristiane ^{6,7*}

Palavras-Chave: Plantas medicinais. Estaquia. Guaco.

INTRODUÇÃO

O guaco (*Mikania* spp.) é conhecido como Guaco trepador, Erva-de-cobra, Cipócatinga e Coração-de-Jesus e pertence à família das Asteraceae. Originário da América do Sul têm ocorrência descrita no Brasil, Uruguai, Argentina e Paraguai (CORRÊA JÚNIOR *et al.*, 1994). Geralmente, as folhas são utilizadas de forma medicinal, devido à presença de constituintes químicos, como: as cumarinas, óleos essenciais (cineol, borneol e eugenol), taninos, guacosídeos, flavonóides e compostos sesquiterpênicos e diterpênicos. Possui ação espectorante, broncodilatadora, antiasmática, para reumatismo, nevralgia e contra picadas de cobras e insetos venenosos (FRANCO, 1998).

O guaco pode ser propagado de forma vegetativa por meio da estaquia. De acordo com Negrelle e Doni (2001), características morfológicas do guaco favorecem o processo de propagação via estaquia. Boerger *et al.* (2004) verificaram que estacas oriundas de ramos herbáceos, semi-lenhosos e lenhosos possuem capacidade similar de emissão de raízes adventícias. Por outro lado, as características físico-químicas do substrato utilizado para a propagação pode influenciar a capacidade de enraizamento das mudas. Desta forma, o

Email:ju_camera@yahoo.com.br

¹ Acadêmica do Curso de Agronomia, bolsista PIBITI CNPq/UNICRUZ. E- mail: andressa10 hengel@hotmail.com

²Docente, Orientadora Dr^a. do Centro de Ciências da Saúde e Agrárias Universidade de Cruz Alta - UNICRUZ. E-mail: jkoefender@unicruz.edu.br

³Docente Dr. do Centro de Ciências da Saúde e Agrárias Universidade de Cruz Alta - UNICRUZ. E-mail: candidamanfio@gmail.com; dgolle@unicruz.edu.br;robertacattaneo82@gmail.com

⁴Bolsista DOCFIX- CAPES/FAPERGS Universidade de Cruz Alta –UNICRUZ.

⁵ Mestrando em Agronomia da Universidade Federal de Santa Maria-RS. E-mail:andre-schoffel@hotmail.com ⁶Bióloga, Esp., Técnica de Laboratório – UNICRUZ. E-mail: ckaiper@unicruz.edu.br E-mail:ckaiper@unicruz.edu.br

⁷ Polo de Inovação Tecnológica do Alto Jacuí, Laboratório de Cultura de Tecidos Vegetais "in vitro", Prédio 1, Sala 111, Campus, UNICRUZ, Cruz Alta, RS, Brasil. Cep: 98.020-290. Apoio: SDECT-RS:Convênio SCIT 48/2013 e Bolsa PIBITI CNPq

XVIII MOSTRA
DE INICIAÇÃO CIENTÍFICA
XIII MOSTRA
DE APOSTRA
OE POS-GRADUAÇÃO
CIÊNCIA, TECNOLOGIA É INOVAÇÃO
I MOSTRA
DE INICIAÇÃO CIENTÍFICA JR.

objetivo do trabalho foi avaliar diferentes tipos de substrato para a propagação do guaco por estaquia.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação, no Laboratório de Multiplicação Vegetal da Universidade de Cruz Alta (UNICRUZ). O material vegetal utilizado foi retirado de plantas matrizes de guaco em estado vegetativo, localizadas no horto da Unicruz e o tamanho das estacas foi de 10 cm. O delineamento experimental utilizado foi o inteiramente casualizado, com quatro tratamentos e cinco repetições, em que cada parcela foi composta por um recipiente plástico de 300 ml, com uma planta. Os tratamentos foram compostos por diferentes tipos de substrato: substrato comercial (100%), substrato comercial (50%) + solo (50%), resíduo de silo (50%) + substrato comercial (50%) e substrato comercial (75%) + resíduo de silo (25%).

Tabela 1. Características químicas de diferentes substratos utilizados para propagação vegetativa do guaco. Unicruz, Cruz Alta, 2015.

SUBSTRATO	M.O	P	K	Al	Ca	Mg	Cu	Zn	Mn	
	(%)	mg/dm³								
1	15,0	195,3	582	0,4	12,5	3,6	0,8	7,5	80	
2	9,4	127,9	240	0,4	7,5	2,6	1,6	5,2	56	
3	15,5	196,2	1045	1,5	6,9	4,1	0,5	14,8	49	
4	14,9	196,7	1086	0,6	11,5	4,3	0,5	12,1	72	

1=Substrato comercial 100%; 2=Substrato comercial 50% + 50% de solo; 3=Resíduo de silo 50% + substrato comercial 50%; 4=Substrato comercial 75% + Resíduo de silo 25%;

Aos 60 dias após o plantio, foram avaliados: sobrevivência (%), número de brotações, altura de brotações (cm), número de folhas, comprimento de raiz (cm), massa fresca (g) e massa seca (g). Os dados foram transformados em raiz quadrada de X+0,5, submetidos à análise da variância e as médias foram comparadas pelo teste de Scott-Knott, a 5% de probabilidade, com auxílio do pacote estatístico Sisvar (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

Houve diferença significativa para todos os parâmetros em estudo. Para a sobrevivência de mudas, número de brotos, altura de brotos, número de folhas e massa fresca e seca os melhores resultados foram observados quando as mudas foram produzidas nos substratos 100%SC e 50%SC + 50%SOLO (Tabela 2). Este resultado difere do observado por Carvalho et al., (2007). Os autores não observaram influência dos diferentes tipos de substrato avaliados (solo; solo + vermiculita; solo + vermicomposto; solo + vermiculita + vermicomposto) sobre o enraizamento de estacas de carqueja (*Baccharis* spp.). Por outro lado, os resultados do presente trabalho são similares aos observados por Bona et al., (2005), que trabalhando com diferentes espécies de carqueja, observaram que o substrato comercial proporcionou os melhores resultados para o número de brotações e percentual de enraizamento.

Tabela 2. Média das variáveis, sobrevivência (%), número de brotações, altura de brotações (cm), número de folhas, comprimento de raiz (cm), massa fresca (g) e massa seca (g), em diferentes substratos. UNICRUZ, 2015.

Substratos	Sobrevivência (%)	N° brotações	Altura brotos (cm)	N° folhas	Comp. Raiz (cm)	Massa Fresca (g)	Massa Seca (g)
100% SC ¹	68,05 a*	1,28 a	3,28 a	6,00 a	10,83 a	2,94 a	0,33 a
50%SC+50%SOLO	54,16 a	1,06 a	2,61 a	4,89 a	9,50 a	2,50 a	0,22 a
50%SC+50%RS	5,56 c	0,11 b	0,22 b	1,67 b	4,06 b	0,83 b	0,00 b
75% SC+25% RS	17,5 b	0,28 b	1,17 b	0,50 b	0,61 c	0,22 c	0,00 b
CV (%)	37,29	18,92	37,34	36,05	36,86	26,97	17,86

¹substrato comercial (100%), substrato comercial (50%) + solo (50%), resíduo de silo (50%) + substrato comercial (50%) e substrato comercial (75%) + resíduo de silo (25%).*Médias seguidas pela mesma letra, na coluna, não diferem pelo teste de Scott Knott a 5% de probabilidade. Dados transformados Raiz quadrada de Y + 0.5 - SQRT (Y + 0.5).

Os melhores resultados observados com o uso de 100% SC devem-se provavelmente as melhores características físico-químicas do substrato (KAMPF, 2000). Da mesma forma, o uso da mistura 50% SC + 50% SOLO possivelmente foi beneficiada pelas características do

substrato, já que por apresentar alta densidade e reduzida porosidade, o solo agrícola prejudica a propagação vegetativa e dificulta a capacidade de enraizamento de estacas (KÄMPF, 2000). De acordo com Paulus e Paulus (2007), a utilização da mistura de solo + casca de arroz carbonizada favoreceu a produção de mudas de hortelã propagadas por estaquia. A mistura de solo agrícola com substrato comercial pode trazer benefícios para o sistema de produção de mudas de guaco propagadas por estaquia, inclusive, pela redução de custos com a aquisição de substratos comerciais.

CONCLUSÃO

A capacidade de sobrevivência de plantas, número de brotos, altura de brotos, número de folhas, comprimento de raiz, massa seca e massa fresca do guaco são influenciados pelos diferentes tipos de substrato. O substrato comercial (100%) e a mistura substrato comercial (50%) + solo (50%) são indicados para a estaquia do guaco.

REFERÊNCIAS

BOEGER M.R.T.; ALQUINI, Y.; NEGRELLE, R.R.B. Características anatômicas da região nodal de estacas em diferentes fases de desenvolvimento de guaco (*Mikania glomerata* Sprengel - Asteraceae). **Revista Brasileira de Plantas Medicinais**, v.6, p.1-6. 2004.

BONA, C. M. *et al.* Estaquia de três espécies de *Baccharis*. **Ciência Rural**, Santa Maria, v. 35, n. 1, p. 223-226, jan./fev. 2005.

CARVALHO R.I.N; NOLASCO M.A.; CARVALHO, T.; RIPKA, M.; GIUBLIN, L.M.; NEGRELLO, M.; SCHEFFER, M.C.; Enraizamento de estacas de carqueja em função de diferentes substratos e posições do ramo em plantas masculinas e femininas. **Scientia Agrária**, Curitiba, v.8, n.3, p.269-274. 2007.

CORRÊA JÚNIOR, C; MING, L.C; SCHEFFER, M.C. Cultivo de plantas medicinais, condimentares e aromáticas. 2 ed. Jaboticabal, SP: Fundação de Estudos e Pesquisas em Agronomia, Medicina Veterinária e Zootecnia (FUNEP), 1994. 162 p.

FERREIRA D.F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia** (UFLA) v.35, p. 1039-1042. 2011.

FRANCO L.L. **As sensacionais 50 plantas medicinais, campeãs de poder curativo.** 3ª ed. Curitiba: O Naturalista, 1998. 235 p.

KÄMPF, A.N. **Produção comercial de plantas ornamentais**. Guaíba: Agropecuária, 2000. 254 p.

NEGRELLE, R.R.B.; DONI, M.E. Efeito da maturidade dos ramos na formação de mudas de guaco por meio de estaquia. **Horticultura Brasileira**, v.19, n.3, p.351-355. 2001.

PAULUS D.; PAULUS E. C. Efeito de substratos agrícolas na produção de mudas de hortelã propagadas por estaquia. **Horticultura Brasileira**, v.25, p. 594-597. 2007.